Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Front Immunol ; 13: 879033, 2022.
Article in English | MEDLINE | ID: covidwho-1933662

ABSTRACT

Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.


Subject(s)
COVID-19 , E-Selectin , Endothelial Cells , Humans , Intercellular Adhesion Molecule-1 , Interleukin-6 , Lung/blood supply , Obesity , SARS-CoV-2 , Vascular Cell Adhesion Molecule-1
2.
Heliyon ; 6(8): e04696, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1269279

ABSTRACT

Obesity is a risk factor for SARS-CoV-2 infected patients to develop respiratory failure. Leptin produced in visceral fat might play a role in the deterioration to mechanical ventilation. A cross sectional study was performed. The mean BMI was 31 kg/m2 (range 24.8-48.4) for the 31 SARS-CoV-2 ventilated patients and 26 kg/m2 (range 22.4-33.5) for 8 critically ill non-infected control patients. SARS-CoV-2 infected patients with a similar BMI as control patients appear to have significantly higher levels of serum leptin. The mean leptin level was 21.2 (6.0-85.2) vs 5.6 (2.4-8.2) ug/L for SARS-CoV-2 and controls respectively (p = 0.0007). With these findings we describe a clinical and biological framework that may explain these clinical observations. The ACE2 utilization by the virus leads to local pulmonary inflammation due to ACE2-ATII disbalance. This might be enhanced by an increase in leptin production induced by SARS-CoV-2 infection of visceral fat. Leptin receptors in the lungs are now more activated to enhance local pulmonary inflammation. This adds to the pre-existent chronic inflammation in obese patients. Visceral fat, lung tissue and leptin production play an interconnecting role. This insight can lead the way to further research and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL